首页> 外文OA文献 >Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms
【2h】

Collision bounds for the additive Pollard rho algorithm for solving discrete logarithms

机译:求解离散对数的加性Pollard rho算法的碰撞界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We prove collision bounds for the Pollard rho algorithm to solve the discrete logarithm problem in a general cyclic group $\mathbf {G}$ . Unlike the setting studied by Kim et al., we consider additive walks: the setting used in practice to solve the elliptic curve discrete logarithm problem. Our bounds differ from the birthday bound (||)$\mathcal {O}(\sqrt{\vert \mathbf {G}\vert })$ by a factor of log||$\sqrt{\log {\vert \mathbf {G}\vert }}$ and are based on mixing time estimates for random walks on finite abelian groups due to Dou and Hildebrand
机译:我们证明了Pollard rho算法的冲突边界,可以解决一般循环群$ \ mathbf {G} $中的离散对数问题。与Kim等人研究的设置不同,我们考虑加法游走:实际用于解决椭圆曲线离散对数问题的设置。我们的界线与生日界线(||)$ \ mathcal {O}(\ sqrt {\ vert \ mathbf {G} \ vert}} $$相差log || $ \ sqrt {\ log {\ vert \ mathbf {G} \ vert}} $,并且基于基于Dou和Hildebrand的有限阿贝尔群上随机游动的混合时间估计

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号